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Abstract

Several interlinked algorithms for peak deconvolution by non-linear regression are presented. These procedures, together with the peak
detection methods outlined in Part I, have allowed the implementation of an automatic method able to process multi-overlapped signals,
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equiring little user interaction. A criterion based on the evaluation of the multivariate selectivity of the chromatographic signal i
uto-select the most efficient deconvolution procedure for each chromatographic situation. In this way, non-optimal local solutions a

n cases of high overlap, and short computation times are obtained in situations of high resolution. A new algorithm, fitting both th
ignal and the second derivatives is proved to avoid local optima in intermediate coelution situations. This allows achieving the globa
ithout the need of background knowledge by the user. A previously reported peak model, a Gaussian with a polynomial standar
hose complexity can be modulated to enhance the fitting quality, was applied. However, the original formulation was modified t
aseline outside the peak region. Also, the optimal model complexity was auto-selected via error propagation theory. The met

o process simultaneously several related chromatograms. The software was tested with both simulated and experimental chr
btained with monolithic silica columns.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Deconvolution is a powerful mathematical tool for
nhancing the selectivity offered by chemical methods.
n important application is the separation of a complex
hromatographic signal in its individual contributions,
hen partial coelution is obtained due to an insufficient
eparation power of the chromatographic system. As a result,
ompounds hidden within a peak cluster can be quantified
ith relatively small errors. However, these chemometric

ools usually require specialised knowledge, which makes its
pplication in routine analysis by non-expert users difficult.

n this work, a set of methods is presented that automate

∗ Corresponding author. Tel.: +34 963543003; fax: +34 963544436.
E-mail address: jose.r.torres@uv.es (J.R. Torres-Lapasió).

the deconvolution process in order to facilitate the rou
application of this technique.

Part I [1] was focused on the pre-treatment and ana
of the data before deconvolution. An algorithm to scan a
nal and provide the number of underlying peaks, as we
estimates of the peak parameters, was developed, bas
the study of the original signal and the first-, second-,
third-order derivatives. The noise of the chromatogram
removed using the Savitsky-Golay (SG) technique, and
Durbin-Watson criterion was applied to establish the opt
window size to minimise distortions by the smoothing a
rithm. Also, an automatic method for peak identification
presented for the comparison of signals of the same
pound injected in different samples.

This part describes different methods of deconvolu
and the tools for making the on-line decisions about w
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algorithm and peak model should be applied. Most param-
eters are obtained by non-linear regression[2]. A good col-
lection of classical non-linear regression algorithms can be
found in the literature[3]. However, most of them present the
disadvantage of being local: they tend to find not the global
but the closest solution to the selected candidate, not neces-
sarily the true global optimum. Global methods are advisable
to account these situations[4], since they explore the whole
parameter search space instead of only the neighbourhood of
a single candidate solution. Some examples of global tech-
niques are genetic algorithms[5] and simulated annealing
[6]. A hybrid method, called “locally optimised genetic al-
gorithm” (LOGA), which combines the advantages of both
the global and the local search methods, was developed re-
cently[7]. It was demonstrated to be especially useful for the
deconvolution of strong overlapping situations.

In this work, four different deconvolution algorithms with
different capabilities were applied, one of them being the
LOGA method. The tendency to converge into local solutions
depends on the chromatographic situation. Chromatograms
with slight peak overlap can usually be solved well with
classical local methods, but situations with strong coelution
require the selection of more powerful algorithms in order
to avoid being trapped into local solutions. However, global
methods are more time-consuming and, therefore, should be
applied only when strictly necessary. The decision on the
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model is needed to describe each elementary peak. In this
work, the selected model was the polynomially modified
Gaussian (PMG)[10]:

h(t) = h0 exp

[
−1

2

(
t − tR

s0 + s1(t − tR) + s2(t − tR)2 + . . .

)2
]

(1)

whereh0 is the maximal peak height,h(t) the height at time
t, tR the solute retention time, ands0 and higher order terms
are the standard deviation and distorting parameters, respec-
tively. Eq.(1)presents the advantage of being able to describe
both tailing and fronting peaks. Note that this equation rep-
resents actually a family of models, since according to the
polynomial degree within the standard deviation term, several
types of function may arise. The higher the degree, the more
flexible the model and the better the achieved fitting to the
experimental data. Theoretically, there is no limit to the poly-
nomial degree, but in practice, parabolic or cubic functions
are usually enough to describe most chromatographic signals
without under- or over-fitting. In this work, the polynomial
degree was selected, according to the procedure outlined in
Section2.6.
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nce the difficulty of the deconvolution and computa

ime, is not evident and requires a quantitative estima
his work proposes a tool for the automatic selection o
dequate deconvolution algorithm adapted to each chrom
raphic situation. This evaluation is based on multiva
gures of merit[8].

From a mathematical standpoint, deconvolution con
f fitting the chromatographic signal to a combination of
ividual peaks, each of them described with a particular
odel. Several models can be found in the literature[9], and

or some of them the adaptation of their complexity to
f the experimentally obtained peak profile is possible.
election of the proper model constitutes another proble
ackle for non-experienced users, and for this reason, thi
as also automated in this work. To achieve this, a me

s proposed to determine the statistical significance of
eak parameter during the deconvolution process.

To study the performance of the methods, they were
ested under controlled conditions with simulated data.
urther step, they were applied to real experimental data

. Theory

.1. Peak model

Deconvolution consists of fitting an experimental ch
atogram (or a set of them) to a linear combination of i

idual chromatographic peaks. Hence, a mathematical
nough so that the baseline tends to grow far from
eak, which is especially troublesome in situations w

he individual peaks involve long baselines between pe
hese risings should not be neglected in situations
s when the minimal height is significant owing to str
symmetry (B/A > 2.5). This problem was initially tackle
y setting the height at each side of the peak regio

he respective minimal value (Fig. 1) [11]. It should be
entioned that the parameter set on the simulation
icted in this figure was deliberately unreal to get str
aisings.

The outlined solution works when a few peaks (e.
r 3) overlap, but may lead to biased deconvolution
ome instances, especially when the accumulation of
tant negligible values is translated in significant growth
he baseline owing to the large number of peaks within
luster.

This problem has been tackled in the literature in sev
ays[12,13]. We solved it by cropping the PMG model a
ubstituting each outer region with an exponential deca
given point so that the derivatives of both PMG and e
ential functions coincide. This was done at both sides o
eak. The method was applied to improve the simulatio
ighly distorted electrophoretic signals by setting the c
ection at 10% peak height, since efficiency and asymm
ata involved in simulations were taken at this peak ratio.
rocedure was, however, not reported in that work, but
pplied[14]. For the current work, the method was improv
aking the retention time where the truncation takes p
epending on the peak shape. The resulting set of equ
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Fig. 1. Different solutions for the problem of the abnormal raisings in the
original formulation of the PMG model: unaltered (solid line), setting con-
stant values at peak distances far from both minima (dashed line), and substi-
tuting it by an exponential function fort > t3 (dot-dash). See the text for the
computation ofh0, h1, h2, h3 andt2. The zone of peak truncation is enlarged
in (b). The simulation was done using a forced parameter set to emphasise
the raisings.

is formally:

h(t) =




a1 exp[b1(t − tR)] if

h0 exp

[
−1

2

(
t − tR

s0 + s1(t − tR) + s2(t − tR)2 . . .

)2
]

if

a2 exp[b2(t − tR)] if

How to determinet2 is shown inFig. 1. It is calculated as
the time in which the PMG function reaches theh3 value:

h3 = h1

(
F

h0
h2 + 1

)
= h1

(
F

(
1 − h1

h0

)
+ 1

)
(3)

whereh1 is the height at the minimum of the right-side of the
peak, andh2 = h0 − h1. An identical relationship holds fort1

(left side of the peak). Eq.(3) makesh3 tending to zero when
h1 does. This way, when the minimum is located very close
to the baseline (Fig. 1b), the exponential decay truncates the
model closer to this minimum. When the minimum is not de-
tected, the exponential function is just not used. The factorF
(0 <F ≤ 1) modulates the importance of the exponential part:
the higher this value, the closer thet2 value to the retention
time and the higher the importance of the exponential part. A
value ofF = 0.1 was found appropriate, and used throughout
this work.

The parameters of the exponential functions (a1, b1, a2
andb2 in Eq. (2)) are computed making the values ofh(t)
and∂h(t)/∂t of both exponential and PMG functions equal at
h = h3. After solving the two-equation system at each side of
the peak region, the exponential function parameters (bi and
ai) are found to be:

bi = j2

ti − tR

×
[
−1 + j(s1 + 2s2(ti − tR) + 3s3(ti − tR)2 + . . .)

]
(4)

where

j = ±
√

−2 ln

(
h3

)
(5)
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h0

nd

i = h3 exp[−bi(ti − tR)] (6)

In Eq.(5), the minus sign is used fori = 1 (left side of the
eak) and the plus wheni = 2 (right side of the peak). Th
omposite peak function will be called PEMG (polynom
xponential modified Gaussian). From this point on,
cronym PEMG0 will denote a Gaussian function, PEM
ill include a linear standard deviation in Eq.(1), PEMG2,
parabolic standard deviation, etc.

.2. Deconvolution algorithms

The fitting of chromatographic profiles implies a n
inear regression. This means that the model paramete

stimated iteratively by least-squares. Several method
e found in the literature to solve this kind of problem[3],
ut the risk of finding a solution not corresponding to
lobal least-squares minimum is always present. The l

he peak separation, the higher the probability of finding
al solution. For this reason, two families of algorithms w
mplemented, one of them suitable for easy deconvolut
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and the other for more complex problems. How to select the
proper algorithm is explained in Section2.3.

Algorithms that contain a random part in their architec-
ture have more chances of finding global optima. Examples
are genetic algorithms[6] (GAs) or multi-start local search
(MSLS) [15]. A disadvantage is that the user has to set some
configuration parameters of the algorithm, which makes the
automation difficult. The performance of these techniques
deteriorates dramatically if inadequate parameters are used.
For this reason, these methods require trained users able to
set properly the fitting parameters.

Algorithms without random part (like the Gauss–Newton
[2] or Powell[3] methods), require less user knowledge, but
are less efficient. An original algorithm called the Powell-2
method is presented in this work, which solves the problem
of local optima without the requirement of a random part.
The algorithms can be summarised as follows:

(i) LOGA [7], which includes a random part and is appro-
priate for complex problems.

(ii) Powell-2, without a random part and appropriate for
complex problems.

(iii) MSLS [15], with random part, appropriate for simple
problems.

(iv) Powell-1[3], without random part, appropriate for sim-
ple problems.
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be produced in steps (i) and (ii), resulting then on
no net influence introduced in the residuals between
experimental and predicted second derivatives.

(iii) With the refined parameters obtained from step (ii) as
initial guesses, apply the Powell-1 method by fitting
this time the original signal and performing the same
number of iterations as in (ii).

(iv) Determine the residuals obtained in (iii). If a significant
improvement is found, return to step (ii).

(v) Apply the Powell method as in step (iii), but with a
larger number of iterations for fine-tuning the solution.

2.2.3. The multi-start local search algorithm
MSLS has been proposed as an alternative to genetic al-

gorithms for simple problems[15]. It consists of performing
repeatedly local searches starting from different initial so-
lutions. The method starts with a set of random solutions,
which fall within an initial range of parameters. The Powell-
1 method with a low number of iterations is applied to each
candidate solution. The best of these is then fine-tuned by us-
ing the Powell-1 method with a larger number of iterations.

2.2.4. The LOGA algorithm
Several algorithms (e.g. hybrid genetic algorithms[7,16]

or immune algorithms[17]) have been proposed in the liter-
ature to tackle the problem of local convergence in the de-
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.2.1. The Powell-1 algorithm
This algorithm is the well-known Powell method[3] for

on-linear regression. It is the simplest and also the fa
lgorithm among the four considered in this work, an
sed for simple deconvolution problems. It will be called h
Powell-1” to distinguish it from the “Powell-2” algorithm
hich is explained below.

.2.2. The Powell-2 algorithm
It consists of a modification of the Powell algorithm, a

s useful for more complex problems. The modified Po
ts the model parameters so that two objective function
inimised, namely the agreement between fitted and e

mental chromatograms, and the agreement between s
erivatives of fitted and experimental chromatograms.
bjective functions are alternated throughout the regres

The algorithm steps are as follows:

(i) Compute the second derivative of the experimental c
matogram, according to Ref.[1].

(ii) Obtain the fitted chromatogram by applying
Powell-1 method[3] to the second derivatives, by us
a predefined number of iterations. In each iteration
predicted signal is computed by applying Eq.(2) with
the current set of parameters, and then applying
smoothing. The SG parameters used in this step ar
same as applied in (i). A numerical evaluation of Eq(2)
is preferred to compensate the deviation produce
a possible peak distortion introduced by the smoot
technique. The reason is that identical distortions
onvolution of chromatographic signals. Genetic algorit
nd related tools are promising to solve these problems

hey are difficult to automate, and in some cases coul
uire prohibitive computation times. A hybrid method ca
OGA, which includes a local search as a new genetic
ration[7] was applied to chromatographic deconvolu
roblems, with good results[11].

.3. Selection of the deconvolution algorithm: the
ultivariate selectivity

The user makes the decision on the type of algorithm
ith or without random part), according to his/her experie
ut the complexity of the algorithm (i.e. the choice betw
owell-1 and Powell-2, or between MSLS and LOGA
elected in a automatic way. Different peaks detected i
ame chromatogram may present different levels of ove
nd therefore, a single chromatogram may require too
ifferent complexity.

The difficulty of a deconvolution problem is estima
hrough the study of multivariate figures of merit of the ch
atographic data, which are used to quantify the compl
f an analytical problem[18]. In previous work, first-orde
ultivariate selectivity was demonstrated to be able to
ict the quality of the deconvolution[19]. It is used here a
criterion to select the proper deconvolution algorithm

hort account of the method is given below (more detail
iven in[19]).

First-order multivariate selectivity for an analytes, in the
resence of compoundsa andb acting as interferents, is d



150 G. Vivó-Truyols et al. / J. Chromatogr. A 1096 (2005) 146–155

fined as follows. The peak profiles of analytesa, b ands, each
of them containingt time measurements, are first outlined as
three column vectors (a, b ands) in at-dimensional space. Let
W−s be at × 2 interferents matrix that contains the peak pro-
filesa andb. The orthogonal projectionp(s) of s ontoW−s is:

p(s) = [W−sW+
−s]s (7)

whereW+
−s denotes the Moore-Penrose generalised inverse

of W−s. The multivariate first-order selectivity for solutes
(SELs) is defined as follows:

SELs = ||s − p(s)||
||s|| (8)

It was demonstrated that this value is an estimator of the
problem complexity in the deconvolution ofs in a signal con-
stituted by a combination ofs, a andb [19]. The multivariate
selectivity is computed for all the peaks present in a chro-
matogram.

As described in Part I[1], the method splits each chro-
matogram to be deconvolved in several elution zones. Each
of these zones is then treated independently from the others.
When SELs for any of the peaks involved within an elution
region falls below a certain threshold value, the deconvolu-
tion of this region is considered complex (see Section4.1for
the selection of the threshold value). The algorithms detailed
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of the peak model parameters. Then, a peak-identification
step follows, which computes how dissimilar are all possible
peak pairs in order to identify if the same compound is present
in more than one chromatogram. This measurement should
be independent of the concentration of each peak, and able
to compare peaks from different chromatograms, perhaps in-
volving peaks acquired at different sampling frequencies. For
this reason, the rough estimation of the model parameters
(see Section2.3 of Part I of this work[1]) was selected to
build a modelled peak. This allows building synthetic chro-
matograms sharing a common time vector as independent
variable, which solves the problem of different sampling fre-
quencies. The dissimilarity (Disi,j) between two peaksi and
j in two different chromatograms is measured as the sinus of
the angle between both vectorsyi andyj arranged in columns
containing the peak profile estimates:

Disi,j = ||yi − (yjyT
j /||yj||2)yi||

||yi||
(9)

whereyT
j is the transpose ofyj. The dissimilarity coincides

with the multivariate selectivity for first-order data in the way
defined in Ref.[8], but with only one compound as interferent.
Since the dissimilarity is a sinus, it varies between 0 (com-
plete overlap) and 1 (peaks fully resolved). Those peak pairs
belonging to different chromatograms whose dissimilarity
f d by
t

ess-
m reli-
a an
t nated
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l und to
h ded
f

ning
t qual,
a from
b peak
s true
i imes
a ow-
r

2
i
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t lied.
A nds
t ual
c ture.
I first
r This
i ram
n Section2.2are then selected, according to the comple
f the elution regions.

The evaluation of SELs is performed before the deco
olution itself. Therefore, the initial estimates of the p
arameters in the deconvolution algorithms (see Part[1])
re used to calculate the theoretical peak profiles ofs, a and
. Accordingly, a more or less biased value of SELs will be
btained, since not the actual but only an approximatio

he parameters is taken. Therefore, a higher threshold
s recommended to account possible under-estimations
ELs value due to biased initial parameters.

.4. Identifying compounds from different
hromatograms

In previous work[7,11], the deconvolution errors we
emonstrated to notably decrease when first-order
atograms from different batches are treated altoge
hich was called multi-batch deconvolution. Peak pro
f those compounds which are present in more than on

ection are better retrieved, due to a decrease in the amb
f the mathematical solution. This strategy concerns not

he multi-batch treatment of related samples, but also th
lusion of injections of all or some of the standards of
arget compounds.

In this work, this methodology is automated in order to
aximal benefits from multi-batch deconvolution for n

xperienced users. The program processes more tha
hromatogram simultaneously, and the peak detection
ithm is applied to all of them to obtain a rough estima
alls below a certain threshold are assumed be originate
he same compound.

The threshold value of dissimilarity should be an ass
ent of the confidence of the chromatographer on the
bility and difficulty of his/her results: higher values me

hat peak shapes are not reproducible (two peaks origi
y the same compound can be rather dissimilar), whe

ow values restricts the assessment of the same compo
ighly similar peaks. A default value of 0.45 is recommen

or non-problematic chromatograms.
In the next steps of the program, the parameters defi

he peak shape of the same compound will be made e
lthough the retention times and peak heights can vary
atch to batch. This is due to the assumption that the
hape is maintained constant among injections—usually
n most chromatographic systems—, but the retention t
re not strictly reproducible due to irregularities in the fl
ate or other sources.

.5. Sorting out automatically the deconvolution process
n multi-batch treatment

There are several situations where the multi-b
reatment outlined in the previous section can be app

straightforward example of this approach correspo
o the consideration of standard injections of individ
ompounds together with the chromatogram of a mix
n this case, the peak shape of each compound is
etrieved by fitting the chromatogram of the standards.
nformation is then applied to deconvolve the chromatog
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of the mixture in a second step, forcing each peak shape
to be equal to the previously found with the standards.
This procedure cannot be classified, however, as a true
multi-batch treatment. The reinforcement of information
can be also achieved even when no standard injection is
available, but in this case, chromatograms corresponding to
related mixtures are required. This second case corresponds
to a true multi-batch deconvolution, since all chromatograms
are treated not sequentially but at the same time. Enhanced
results are obtained with this strategy, since the parameters
defining the peak shape are less ambiguous[7,11].

Strictly speaking, the difference between these two ap-
proaches relies on the availability or not of chromatograms
including baseline-resolved peaks to be used as if were
standards. If the same compound is baseline-resolved in one
chromatogram but poorly separated in another, the deconvo-
lution can be performed not simultaneously but sequentially.
This speeds up the computation time without loosing
precision, since the peak shape can be well established from
the baseline-resolved peak. The multivariate selectivity,
computed as described in Section2.3, was used here as an
estimator of the resolution. The same threshold used to select
the type of algorithm was adopted in this case to decide
whether the chromatograms should be deconvolved at a time,
or on the contrary, if a sequential treatment will report more
benefits.
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ing peaks (this means that the minimal polynomial degree
will be at least one). A second fitting of the chromatogram
is then performed, using now the previously fitted parame-
ters as initial estimates, and zero values for thes2 parame-
ters for those peaks whose model complexity was increased.
Once got the convergence, the same study on the confidence
intervals is performed, decreasing the model complexity for
those compounds for which the higher term in the polynomial
was found non-significant, and increasing the polynomial de-
gree for the others. If incidentally, the treatment decreases the
polynomial degree of a given compound, it will be kept and
no more analysis of the uncertainty of the parameters referred
to this compound will be performed. The process continues
by decreasing or increasing the polynomial degrees until the
degree of all compounds has been identified.

3. Experimental

The reagents, apparatus and experimental procedure were
described in Part I[1].

4. Results and discussion

4.1. Comparison of the different algorithms
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.6. Selection of the polynomial degree in the PEMG
odel

The use of Eq.(2) as a model to deconvolve chroma
raphic peaks obliges to an appropriate selection of the
omial degree (i.e. PEMG1, PEMG2, etc.). This should
ddressed with care: whereas a too simple polynomia

ntroduce systematic errors (underfitting), a too complex
ay lead to overfitting (two replicates with slightly differe
oise can lead to completely different solutions). In this c

he analysis of residuals is not a valid tool to assess the p
olynomial degree. The reason is that the predicted signa
t always better the experimental part when more com
olynomials are selected, and the highest—although no
ssarily correct— polynomial degree will be systematic
hosen as the best.

An analysis of the uncertainty of thesi parameters—th
alues describing the standard deviation in Eq.(2)—was per
ormed to establish the proper model complexity. The 9
onfidence interval of eachsi parameter was calculated,
ording to Ref.[2].

A parameter is considered non-significant when its co
ence interval brackets zero. Based on this concept, th
ect polynomial degree for each peak is selected as follow
first step, a PEMG1 model is fitted to all peaks. At that
ent, the correct polynomial degree is still unknown. Th

he polynomial degree for those compounds whoses1 confi-
ence interval does not contain the zero value is increas
EMG2, whereas the PEMG1 model is kept for the rem
In order to test the performance of the proposed algori
nd the adequacy of the multivariate selectivity as an es

or of the problem complexity, synthetic experiments w
arried out, consisting of several peak arrangements in
ng two peaks at different overlapping degree. The sig
ere built from two PEMG1 peaks. Parameter values w

Eq.(4)) h0 = 1, s0 = 6 ands1 = 0.1 for both peaks. The rete
ion time of one of them was kept constant attR = 40 (arbi-
rary time units), whereas the other was varied from 50 t
stepped in 0.5 units from 50 to 60 and in 1 unit from 6
0). Blank noise of 0.01 standard deviation units was a

o each chromatogram. The four algorithms were applie
ach experiment.

Usually, the quality of the fitting is established throu
straightforward comparison between the predicted an
erimental composite signals, quantifying the discrepan
ith a maximum likelihood estimator, such as the sum
quared residuals (SSR). However, the result of the de
olution is not the composite signal but the individual on
o that not necessarily a low error in SSR is indicative
ight deconvolution. To overcome this, SSR was calcul
y comparing not the experimental and predicted comp
ignals, but each predicted individual profile with the c
esponding theoretical one. This value, called SSRi (indi-
idual sum of squared residuals), has been proved to
ood estimator of the deconvolution error[19]. The squar
oot of this value tends to the standard deviation of the b
oise with complete resolved mixtures, in the absence o
f fit.
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The mean of the two SSRi values (one by compound) was
computed first at each deconvolution experiment. In order to
get a more precise result, the process was applied 10-fold in
each situation, using different seeds for noise generation, cal-
culating a mean value for each overlapping case. The squared
root of the sum of these values is depicted vs. the peak
distance inFig. 2a. In this figure, the value of multivariate
selectivity (right axis) is overlaid.Fig. 2b plots the mean com-
putation time of the 10 experiments as a function of the peak
distance. As can be seen, the four algorithms have the same
behaviour up to a certain resolution threshold (around 20 peak
distance units), which corresponds to a value of selectivity of
ca. 0.99. This means that a simple algorithm will get good re-
sults in the resolution of the mixture. It is noteworthy that the
two complex algorithms (LOGA and Powell-2) need around
1 min of computation time with any deconvolution problem,
whereas the two simplest algorithm took significantly less
time (10 and 2.5 s for MSLS and Powell-1 in the considered
problem, respectively). This means that using the complex

F
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T
S
F
P
s
l
p
1

algorithms for problems of resolution higher than 0.98 is a
waste of time. Naturally, the computation time is increased
with the number of compounds and chromatograms.

As expected, the difference in performance for the algo-
rithms becomes evident in situations of increased overlap.
Both errors obtained with MSLS and Powell-1 are higher than
those given by the complex algorithms. One should note also
that LOGA (Fig. 2, long dashed line) performs the best in
all situations. As commented, its parameters (e.g. population
size, mutation rate, etc.) are however, difficult to establish
a priori. In this case, the parameters used in the algorithm
configuration were selected, according to Ref.[7]. Although
the Powell-2 algorithm performs worse than LOGA, it yields
clearly better results than MSLS and Powell-1, and can be
considered as a quite robust solution for non-experienced
users to resolve highly overlapped situations. Note also that
deconvolution errors are inversely correlated to the multivari-
ate selectivity, which justifies the use of this figure of merit
as a correct estimator of the complexity of the deconvolution
problem, and, consequently, as a guide to select the proper
algorithm.

4.2. Deconvolution of real mixtures of several aromatic
compounds

In order to test the method performance, samples contain-
i utyl-
b ere
c con-
t s of
s rent
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t

dif-
f gram
s ing
e s (se-
q ing
s tan-
d iii),
t ong
c ribed
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ig. 2. Performance of the different algorithms explained in Section2.2
or a two-peak deconvolution problem with different separation degrees.
he mean error (leftY-axis, part a) in deconvolution (expressed as SSR1/2

i ,
ection4.1) for a 10-folded experiment is plotted vs. peak distance (X-axis).
our algorithms were considered: LOGA (long dash), Powell-2 (solid line),
owell-1 (short dash) and MSLS (solid line with (�)). The multivariate
electivity is also given for one of the two compounds (rightY-axis, solid

ine with (+)). Computation times for each algorithm are plotted in part b vs.
eak distance. The top diagram illustrates the chromatographic situations at
0, 15, 20, 25 and 30 arbitrary units of peak distance.
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t ting
t : the
n con-
ng six aromatic compounds (toluene, ethylbenzene, b
enzene,o-terphenyl, amylbenzene and triphenylene) w
hromatographed with aqueous–organic mobile phases
aining 70, 75, 80 and 85% (m/m) methanol. Injection
tandards, together with five mixtures containing diffe
oncentration ratios of the test compounds were inje
wice within each experimental condition.

The deconvolution studies were performed using three
erent methods: (i) processing each sample chromato
eparately (single-batch deconvolution), (ii) deconvolv
ach sample chromatogram together with the standard
uential multi-batch deconvolution), and (iii) deconvolv
imultaneously all sample chromatograms without the s
ards (multi-batch deconvolution). In methods (ii) and (

he assignment of the peaks to a given compound am
hromatograms was performed using the method desc
n Section2.4, with a threshold of 0.45 for dissimilarity. A
he peaks were correctly assessed except the case of m
at 85% methanol, for which a threshold value of 0.55

ntroduced. Only algorithms without random part (Powe
nd Powell-2) were used. The deconvolution program
pplied without any user supervision.

Fig. 3plots the chromatograms obtained with all the m
ures eluted with four different mobile phases (solid lines)
ether with the deconvolved profiles with method (i) (das

ines)—only one of the duplicated injections is plotted
implify the figure. As can be seen, a virtual baseline se
ion was obtained at 70% methanol. This allowed elimina
he error introduced in the preparation of the mixtures
ominal concentration of each compound was corrected
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Fig. 3. Experimental chromatograms (solid line) obtained from the injection of five mixtures eluted with: (a) 70, (b) 75, (c) 80 and (d) 85% (m/m) methanol.
The deconvolved individual profiles (dashed line) using single-batch deconvolution (method (i)) are overlaid. Compound identities: toluene (Tol), ethylbenzene
(Eth), butylbenzene (But),o-terphenyl (Tph), amylbenzene (Amy), and triphenylene (Trp).

sidering the deconvolved peak areas obtained from the chro-
matograms with this mobile phase. For a given compound,
the ratio between the peak areas of the respective standard
and the mixture injection was computed at 70% methanol,
and compared with those obtained for other available mobile
phases. Finally, the relative error in concentration was cal-
culated for each mixture, and the mean over the two values
obtained with the duplicated injections, computed. Results
are presented inTables 1–3. Each table corresponds to the
three different deconvolution methods (i)–(iii).

As can be seen,∼1% mean relative error was obtained in
the deconvolution of the mixture injected at 75% methanol
with the three methods (Fig. 3b). This low error is not sur-
prising, taking into account the separation achieved with this
mobile phase. This allowed establishing the threshold error
associated to the deconvolution: the remaining residual mean
error (due both to lack of fit and peak integration) will be ca.
1%. At decreasing resolution (80% methanol), deconvolution
errors became more important, particularly with the single-
batch treatment—method (i),Table 1. With this method, a
mean error of 3% was obtained. Note that the introduction of
standards allowed a significant decrease in the deconvolution

error (compareTables 1 and 2), yielding figures similar
to those obtained at 75% methanol (around 2%). On the
contrary, the use of multi-batch treatment without stan-
dards (deconvolving the mixtures altogether: method (iii))
does not improve significantly the results when compared
with the single-batch method at this resolution (compare
Tables 1 and 3).

The deconvolution of the mixtures eluted at 85% methanol
constitutes a more difficult problem. In fact, only at this mo-
bile phase, the multivariate selectivity fell below the above
mentioned threshold of 0.98 for toluene and ethylbenzene,
and consequently, the Powell-2 method (instead of Powell-1,
which was automatically selected for the other mobile phases)
was applied to deconvolve the mixture. For this mobile phase,
butylbenzene ando-terphenyl coeluted too strongly, and the
second- and third-order derivatives were unable to distinguish
them within the peak cluster (for this reason, no results are
presented in the table). Also, no evidence (i.e. a shoulder) can
be observed in the original chromatogram indicating the pres-
ence of two compounds (Fig. 3d). With this mobile phase, the
use of the multi-batch method was mandatory to decrease the
errors from 19–50% with the single-batch treatment (Table 1)
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Table 1
Relative errors (%) in concentration in the deconvolution of a set
of mixtures injected in different mobile phases using single-batch
deconvolution—method (i)

Mobile
phasea

Mixture Compoundb

Tol Eth But Tph Amy Trp

75 1 2.0 1.8 1.1 0.6 0.1 1.7
2 0.2 0.0 0.5 −1.3 −0.5 −0.6
3 0.4 1.2 0.7 −0.5 −1.1 0.8
4 −1.5 −0.8 −1.1 −3.0 −3.8 −1.9
5 1.9 2.1 1.8 0.6 0.7 2.3

80 1 8.9 1.3 0.8 1.0 −2.2 2.2
2 1.2 −3.6 −9.8 16.6 −3.2 −1.9
3 1.8 4.6 2.1 1.2 −0.8 3.3
4 6.6 −0.5 −4.2 1.6 −4.9 −0.6
5 4.1 1.7 1.3 1.3 0.1 2.9

85 1 48.8 −11.9 –c –c −7.6 2.9
2 37.2 −26.3 –c –c 5.1 5.2
3 −18.8 60.9 –c –c −1.0 2.2
4 49.6 −9.7 –c –c −6.4 2.6
5 30.7 −21.3 –c –c −4.3 4.5

a Methanol, % (m/m).
b SeeFig. 3for compound identities.
c Unresolved.

to 0.4–5.2% (inclusion of standards,Table 2), or 0.8–49%
(multi-batch treatment with the chromatograms of all mix-
tures but no standards) for toluene and ethylbenzene.

The results of the deconvolution for amylbenzene deserve
a special comment. For this compound, the relative error was
significantly increased at 85% methanol, even when the reso-
lution was not dramatically low (Fig. 3d). This is particularly
striking for the multi-batch deconvolution without standards
(Table 3). The explanation of this effect is the wrong assign-

Table 2
Relative errors (%) in concentration in the deconvolution of a set of mixtures
injected in different mobile phases using multi-batch deconvolution with the
inclusion of standards—method (ii)

Mobile
phasea

Mixture Compoundb

Tol Eth But Tph Amy Trp

75 1 −0.04 2.2 1.0 0.01 2.0 2.1
2 −1.2 0.6 0.5 −3.1 0.4 0.2
3 0.1 1.0 0.2 −1.6 2.8 1.1
4 −3.2 −0.8 −1.2 −3.7 −0.1 −0.8
5 1.2 2.7 1.7 0.3 4.0 2.8

80 1 0.3 4.4 −0.7 1.8 −1.0 3.5
2 0.3 1.9 −0.9 −3.1 −3.2 0.0
3 3.2 5.6 0.9 2.0 1.8 3.7
4 −2.5 2.2 −0.7 −2.1 −1.5 1.5
5 3.1 5.2 0.8 2.2 1.3 3.5

8

Table 3
Relative errors (%) in concentration in the deconvolution of a set of mixtures
injected in different mobile phases, processing those mixtures with the same
mobile phase altogether, and using multi-batch deconvolution without the
inclusion of standards–method (iii)

Mobile
phasea

Mixture Compoundb

Tol Eth But Tph Amy Trp

75 1 1.0 2.4 1.0 0.6 1.4 1.8
2 −0.8 0.5 0.1 −2.5 0.3 0.0
3 0.3 1.0 0.8 −0.4 1.1 1.3
4 −2.5 −0.8 −1.3 −3.1 −1.2 −1.0
5 1.3 2.5 1.9 0.6 2.0 2.3

80 1 8.0 2.3 −1.1 1.8 0.1 2.5
2 6.6 −3.2 −4.7 3.9 −2.1 −1.5
3 9.2 −0.4 −0.6 3.0 2.2 3.4
4 5.4 −0.3 −4.2 0.7 −1.8 0.1
5 8.7 0.4 −1.6 3.1 1.2 2.6

85 1 10.2 0.8 –c –c −26.5 3.0
2 −8.4 13.8 –c –c −17.1 1.8
3 −15.6 48.7 –c –c −20.1 2.2
4 8.8 −1.4 –c –c −23.7 1.6
5 −6.8 12.2 –c –c −22.3 2.0

Mixtures are deconvoluted together in a multi-batch deconvolution without
the inclusion of standards—method (iii).

a Methanol, % (m/m).
b SeeFig. 3for compound identities.
c Unresolved.

ment of the peaks of butylbenzene ando-terphenyl as a sin-
gle peak case. As these peaks are unresolved, a certain lack
of fit remains always in the peak cluster, which is partially
compensated biasing the peak shape of amylbenzene. In the
multi-batch deconvolution (cases ii and iii), the wrongly as-
signed as single-peak butylbenzene +o-terphenyl is forced to
be constant among injections. This is specially troublesome
since the relative peak heights of both compounds are not
constant, so neither the peak shape of the cluster. The effect
is less important when standards are included, since the peak
shape of amylbenzene is fixed in a first step by fitting the indi-
vidual injections of this compound. In case of the single-batch
treatment, the lack of fit introduced by the wrong assignment
of butylbenzene ando-terphenyl as a single peak is better
processed, since the peak shape of this single peak can vary
from batch to batch.

5. Conclusions

The polynomial-exponential modified Gaussian model
presented in this work is useful to deconvolve chromato-
graphic peaks. It constitutes an attractive alternative to solve
the problem of baseline raisings present in the original for-
mulation of the polynomially modified Gaussian function
(PMG) previously described[10]. The PEMG model has the
s bility
a f pri-
m on-
v user
s

5 1 4.6 1.3 –c –c −6.9 4.4
2 0.4 5.0 –c –c −2.8 4.0
3 −5.2 17.3 –c –c −1.1 3.5
4 −0.6 −0.3 –c –c −7.7 2.4
5 2.1 3.4 –c –c −3.1 4.3

a Methanol, % (m/m).
b SeeFig. 3for compound identities.
c Unresolved.
ame advantages as the PMG, among which its high sta
nd easy convergence in fittings constitute features o
ordial importance when this model is applied with dec

olution purposes, in an automatic program (with no
upervision).
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As an aside, increasing or decreasing the polynomial de-
gree of the standard deviation can modulate the complexity of
the model. This avoids both underfitting and overfitting when
this model is used for deconvolution, even when applied to
chromatograms presenting peaks with different asymmetry
levels. An on-line test assessing the significance of each pa-
rameter of the polynomial allows an automatic tuning of the
model complexity, according to each situation. This test is
applied by computing the parameter uncertainties via error
propagation theory.

The practical application of deconvolution introduces dif-
ferent levels of complexity. The peaks usually overlap in
a diverse extent, not only when comparing different chro-
matograms, but also within the same chromatogram. This
makes the use of different deconvolution algorithms con-
venient, to both guarantee an accuracy level good enough
in situations of high overlap, and avoid high computation
times in cases of larger resolution. The multivariate selec-
tivity computed, according to the Lorber’s definition[8] is a
good estimator of the problem complexity, and has allowed
the development of an automatic procedure for the selection
of the most adequate algorithm.

Approaches containing random part, such as conventional
or hybrid genetic algorithms, are difficult to automate and
require a certain background by the user to configure them
appropriately. On the other hand, the classical optimisation
m hods)
r local
s ich
a ond
d nce,
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l atic
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able
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