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Abstract

Several interlinked algorithms for peak deconvolution by non-linear regression are presented. These procedures, together with the pee
detection methods outlined in Part I, have allowed the implementation of an automatic method able to process multi-overlapped signals
requiring little user interaction. A criterion based on the evaluation of the multivariate selectivity of the chromatographic signal is used to
auto-select the most efficient deconvolution procedure for each chromatographic situation. In this way, non-optimal local solutions are avoidec
in cases of high overlap, and short computation times are obtained in situations of high resolution. A new algorithm, fitting both the original
signal and the second derivatives is proved to avoid local optima in intermediate coelution situations. This allows achieving the global optimum
without the need of background knowledge by the user. A previously reported peak model, a Gaussian with a polynomial standard deviatior
whose complexity can be modulated to enhance the fitting quality, was applied. However, the original formulation was modified to account
baseline outside the peak region. Also, the optimal model complexity was auto-selected via error propagation theory. The method is abls
to process simultaneously several related chromatograms. The software was tested with both simulated and experimental chromatograr
obtained with monolithic silica columns.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction the deconvolution process in order to facilitate the routine
application of this technique.
Deconvolution is a powerful mathematical tool for Part I[1] was focused on the pre-treatment and analysis

enhancing the selectivity offered by chemical methods. of the data before deconvolution. An algorithm to scan a sig-
An important application is the separation of a complex nal and provide the number of underlying peaks, as well as
chromatographic signal in its individual contributions, estimates of the peak parameters, was developed, based on
when partial coelution is obtained due to an insufficient the study of the original signal and the first-, second-, and
separation power of the chromatographic system. As a result,third-order derivatives. The noise of the chromatogram was
compounds hidden within a peak cluster can be quantified removed using the Savitsky-Golay (SG) technique, and the
with relatively small errors. However, these chemometric Durbin-Watson criterion was applied to establish the optimal
tools usually require specialised knowledge, which makes its window size to minimise distortions by the smoothing algo-
application in routine analysis by non-expert users difficult. rithm. Also, an automatic method for peak identification was
In this work, a set of methods is presented that automate presented for the comparison of signals of the same com-
pound injected in different samples.
* Corresponding author. Tel.: +34 963543003; fax: +34 963544436, This part describes different methods of deconvolution,
E-mail address: jose.r.torres@uv.es (J.R. Torres-Lapisi and the tools for making the on-line decisions about which

0021-9673/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.chroma.2005.03.072



G. Vivé-Truyols et al. / J. Chromatogr. A 1096 (2005) 146—-155 147

algorithm and peak model should be applied. Most param- model is needed to describe each elementary peak. In this
eters are obtained by non-linear regresgiin A good col- work, the selected model was the polynomially modified
lection of classical non-linear regression algorithms can be Gaussian (PMG]10]:
found in the literaturg3]. However, most of them present the
disadvantage of being local: they tend to find not the global o
but the closest solution to the selected candidate, not necesy, ;) — , exp _1( =R >
sarily the true global optimum. Global methods are advisable 2\ so+ s1(t — tR) + s2(¢ — tR)2 +...
to account these situatiof#], since they explore the whole
; . 1)
parameter search space instead of only the neighbourhood of
a single candidate solution. Some examples of global tech-
nigues are genetic algorithnf§] and simulated annealing wherehg is the maximal peak height(r) the height at time
[6]. A hybrid method, called “locally optimised genetic al- 1, tr the solute retention time, ang and higher order terms
gorithm” (LOGA), which combines the advantages of both are the standard deviation and distorting parameters, respec-
the global and the local search methods, was developed retively. Eq.(1) presents the advantage of being able to describe
cently[7]. It was demonstrated to be especially useful for the both tailing and fronting peaks. Note that this equation rep-
deconvolution of strong overlapping situations. resents actually a family of models, since according to the
In this work, four different deconvolution algorithms with  polynomial degree within the standard deviation term, several
different capabilities were applied, one of them being the types of function may arise. The higher the degree, the more
LOGA method. The tendency to converge into local solutions flexible the model and the better the achieved fitting to the
depends on the chromatographic situation. Chromatogramsexperimental data. Theoretically, there is no limit to the poly-
with slight peak overlap can usually be solved well with nomial degree, but in practice, parabolic or cubic functions
classical local methods, but situations with strong coelution are usually enough to describe most chromatographic signals
require the selection of more powerful algorithms in order without under- or over-fitting. In this work, the polynomial
to avoid being trapped into local solutions. However, global degree was selected, according to the procedure outlined in
methods are more time-consuming and, therefore, should beSection2.6.
applied only when strictly necessary. The decision on the Eq. (1) has a drawback: the peak does not decay rapid
most appropriate deconvolution algorithm, in order to bal- enough so that the baseline tends to grow far from the
ance the difficulty of the deconvolution and computation peak, which is especially troublesome in situations where
time, is not evident and requires a quantitative estimation. the individual peaks involve long baselines between peaks.
This work proposes a tool for the automatic selection of the These risings should not be neglected in situations such
adequate deconvolution algorithm adapted to each chromato-as when the minimal height is significant owing to strong
graphic situation. This evaluation is based on multivariate asymmetry B/A>2.5). This problem was initially tackled
figures of merif8]. by setting the height at each side of the peak region to
From a mathematical standpoint, deconvolution consists the respective minimal valueFig. 1) [11]. It should be
of fitting the chromatographic signal to a combination of in- mentioned that the parameter set on the simulation de-
dividual peaks, each of them described with a particular peak picted in this figure was deliberately unreal to get strong
model. Several models can be found in the literaf9teand raisings.
for some of them the adaptation of their complexity to that ~ The outlined solution works when a few peaks (e.g. 2
of the experimentally obtained peak profile is possible. The or 3) overlap, but may lead to biased deconvolutions in
selection of the proper model constitutes another problem tosome instances, especially when the accumulation of con-
tackle for non-experienced users, and for this reason, this taskstant negligible values is translated in significant growths of
was also automated in this work. To achieve this, a method the baseline owing to the large number of peaks within the
is proposed to determine the statistical significance of eachcluster.
peak parameter during the deconvolution process. This problem has been tackled in the literature in several
To study the performance of the methods, they were first ways[12,13] We solved it by cropping the PMG model and
tested under controlled conditions with simulated data. In a substituting each outer region with an exponential decay in
further step, they were applied to real experimental data.  a given point so that the derivatives of both PMG and expo-
nential functions coincide. This was done at both sides of the
peak. The method was applied to improve the simulations of

2. Theory highly distorted electrophoretic signals by setting the con-
nection at 10% peak height, since efficiency and asymmetry
2.1. Peak model data involved in simulations were taken at this peak ratio. The

procedure was, however, not reported in that work, but just
Deconvolution consists of fitting an experimental chro- applied[14]. For the current work, the method was improved,
matogram (or a set of them) to a linear combination of indi- making the retention time where the truncation takes place
vidual chromatographic peaks. Hence, a mathematical peakdepending on the peak shape. The resulting set of equations
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£ (left side of the peak). E¢3) makes:s tending to zero when
hi1 does. This way, when the minimum is located very close
to the baselineKig. 1b), the exponential decay truncates the
model closer to this minimum. When the minimum is not de-
tected, the exponential function is just not used. The fa€tor

h, (0 <F < 1) modulates the importance of the exponential part:
the higher this value, the closer thevalue to the retention
time and the higher the importance of the exponential part. A
value of F=0.1 was found appropriate, and used throughout
this work.

The parameters of the exponential functioas, ¢1, a2
andb2 in Eq. (2)) are computed making the values /gf)
andoah(r)/dt of both exponential and PMG functions equal at

3 h = hs. After solving the two-equation system at each side of
the peak region, the exponential function parametgrar(d

0 100 200 300 400

(a) Time, Arbitrary Units ai) are found to be:
2
b =
i — IR
x [—1 + (s + 2520t — tR) + 3s3(t; — tR)Z + .. .)}
4)
A
=T X where
\ ~
~ h
'S j=4y/ =2 In<3) (5)
. o hO
~
T h, hy and
o~ ai = h3 exp[-=b;(t; — r)] (6)
E: In Eq. (5), the minus sign is used for 1 (left side of the
50 160 0 180 190 200 peak) and the plus wheir 2 (right side of the peak). The
) Time, Arbitrary Units composite peak function will be called PEMG (polynomial-

exponential modified Gaussian). From this point on, the
Fig. 1. Different solutions for the problem of the abnormal raisings in the @cronym PEMGO will denote a Gaussian function, PEMG1
original formulation of the PMG model: unaltered (solid line), setting con- will include a linear standard deviation in E{.), PEMG2,
stant values at peak distances far from both minima (dashed line), and substi-g parabolic standard deviation, etc.
tuting it by an exponential function fer> r3 (dot-dash). See the text for the
computation ofig, i1, h2, h3 andr,. The zone of peak truncation is enlarged

in (b). The simulation was done using a forced parameter set to emphasise2‘2' Deconvolution algorithms

the raisings.
The fitting of chromatographic profiles implies a non-
is formally: linear regression. This means that the model parameters are
a1 exppi(t — Rr)] ift<n
1 t—1IR 2 .
h(t) =< hg ex —( ) if n<r<n 2
Q p[ 2 So+S1(t—tR)+S2(t—tR)2... @
az explba(t — Rr)] if t>1
How to determine; is shown inFig. 1 Itis calculate(?i a5  estimated iteratively by least-squares. Several methods can
the time in which the PMG function reaches thevalue: be found in the literature to solve this kind of probl¢®j,
F hy but the risk of finding a solution not corresponding to the
h3 = h1 (th + 1> =h (F <1 - 0) + 1) (3) global least-squares minimum is always present. The lower

the peak separation, the higher the probability of finding a lo-
whereh is the height at the minimum of the right-side of the cal solution. For this reason, two families of algorithms were
peak, andtkz = hg — h1. An identical relationship holds fog implemented, one of them suitable for easy deconvolutions,
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and the other for more complex problems. How to select the be produced in steps (i) and (ii), resulting then on

proper algorithm is explained in Secti@rB. no net influence introduced in the residuals between
Algorithms that contain a random part in their architec- experimental and predicted second derivatives.

ture have more chances of finding global optima. Examples (iii) With the refined parameters obtained from step (ii) as

are genetic algorithmfg] (GAs) or multi-start local search initial guesses, apply the Powell-1 method by fitting

(MSLS)[15]. A disadvantage is that the user has to set some this time the original signal and performing the same

configuration parameters of the algorithm, which makes the number of iterations as in (ii).

automation difficult. The performance of these techniques (iv) Determine the residuals obtained in (iii). If a significant

deteriorates dramatically if inadequate parameters are used.  improvement is found, return to step (ii).

For this reason, these methods require trained users able to(v) Apply the Powell method as in step (iii), but with a

set properly the fitting parameters. larger number of iterations for fine-tuning the solution.

Algorithms without random part (like the Gauss—Newton
[2] or Powell[3] methods), require less user knowledge, but 2.2.3. The multi-start local search algorithm
are less efficient. An original algorithm called the Powell-2 MSLS has been proposed as an alternative to genetic al-
method is presented in this work, which solves the problem gorithms for simple problemd.5]. It consists of performing
of local optima without the requirement of a random part. repeatedly local searches starting from different initial so-
The algorithms can be summarised as follows: lutions. The method starts with a set of random solutions,
which fall within an initial range of parameters. The Powell-
1 method with a low number of iterations is applied to each
candidate solution. The best of these is then fine-tuned by us-
ing the Powell-1 method with a larger number of iterations.

(i) LOGA [7], which includes a random part and is appro-
priate for complex problems.

(i) Powell-2, without a random part and appropriate for
complex problems.

(i) MSLS [15], with random part, appropriate for simple 2.2.4. The LOGA algorithm

problems. . . . .
(iv) Powell-1[3], without random part, appropriate for sim- Several aIgon_thms (e.g- hybrid genetic algor!tr{m,iﬁ]
ple problems. or immune algorithm§17]) have been proposed in the liter-

ature to tackle the problem of local convergence in the de-
2.2.1. The Powell-1 algorithm convolution of chromatogrgp_hlc signals. Genetic algorithms
and related tools are promising to solve these problems, but

This algorithm is the well-known Powell meth¢@] for e .
. . ) ; they are difficult to automate, and in some cases could re-
non-linear regression. It is the simplest and also the fastest_ L T )
algorithm among the four considered in this work, and is quire prohibitive computation times. A hybrid method called

. . : LOGA, which includes a local search as a new genetic op-
used for simple deconvolution problems. It will be called here : . : .
N N P B " . eration[7] was applied to chromatographic deconvolution
Powell-1” to distinguish it from the “Powell-2” algorithm, .
which is explained below. problems, with good resul{d1].

2.3. Selection of the deconvolution algorithm: the

2.2.2. The Powell-2 algorithm L ..
multivariate selectivity

It consists of a modification of the Powell algorithm, and
is useful for more complex problems. The modified Powell

. S . The user makes the decision on the type of algorithm (i.e.
fits the model parameters so that two objective functions are_ . ; . . .

o . with orwithout random part), according to his/her experience,
minimised, namely the agreement between fitted and exper-

imental chromatograms, and the agreement between seconam the complexity of the algorithm (i.e. the choice between

o i . owell-1 and Powell-2, or between MSLS and LOGA) is
derivatives of fitted and experimental chromatograms. Both . : : )

o . . selected in a automatic way. Different peaks detected in the
objective functions are alternated throughout the regression.

. i same chromatogram may present different levels of overlap,
The algorithm steps are as follows: : .
and therefore, a single chromatogram may require tools of
(i) Computethe second derivative of the experimental chro- different complexity.
matogram, according to Rdf.]. The difficulty of a deconvolution problem is estimated
(ii) Obtain the fitted chromatogram by applying the through the study of multivariate figures of merit of the chro-
Powell-1 method3] to the second derivatives, by using matographic data, which are used to quantify the complexity
a predefined number of iterations. In each iteration, the of an analytical problenil8]. In previous work, first-order
predicted signal is computed by applying EB) with multivariate selectivity was demonstrated to be able to pre-
the current set of parameters, and then applying SG dict the quality of the deconvolutiofi9]. It is used here as
smoothing. The SG parameters used in this step are thea criterion to select the proper deconvolution algorithm. A
same as applied in (i). A numerical evaluation of &2). short account of the method is given below (more details are
is preferred to compensate the deviation produced by given in[19]).
a possible peak distortion introduced by the smoothing  First-order multivariate selectivity for an analyten the
technique. The reason is that identical distortions will presence of compoundsandb acting as interferents, is de-
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fined as follows. The peak profiles of analyies ands, each of the peak model parameters. Then, a peak-identification
of them containing time measurements, are first outlined as step follows, which computes how dissimilar are all possible

three column vectora(b ands) in ar-dimensional space. Let  peak pairsin order to identify ifthe same compound is present
W_sbe ar x 2 interferents matrix that contains the peak pro- in more than one chromatogram. This measurement should

filesa andb. The orthogonal projectign(s) of s ontoW _siis: be independent of the concentration of each peak, and able
N to compare peaks from different chromatograms, perhaps in-
p(s) = [W_sWigs () volving peaks acquired at different sampling frequencies. For

this reason, the rough estimation of the model parameters
(see Sectior2.3 of Part | of this work[1]) was selected to
build a modelled peak. This allows building synthetic chro-
matograms sharing a common time vector as independent
[Is — p(s)l| variable, which solves the problem of different sampling fre-
sl (8) quencies. The dissimilarity (Dig between two peakisand

J in two different chromatograms is measured as the sinus of

It was demonstrated that this value is an estimator of the the ang'e between both Vect%sandyj arranged in columns

where W= denotes the Moore-Penrose generalised inverse
of W_s. The multivariate first-order selectivity for solute
(SEL) is defined as follows:

problem complexity in the deconvolution oin a signal con- containing the peak profile estimates:

stituted by a combination af ¢ andb [19]. The multivariate

selectivity is computed for all the peaks present in a chro- Ily; — ;5] /11y ;11211

matogram. 1Si.j = ;] ©)

As described in Part [1], the method splits each chro-
matogram to be deconvolved in several elution zones. Eachwherey! is the transpose af;. The dissimilarity coincides
of these zones is then treated independently from the otherswith the multivariate selectivity for first-order data in the way
When SEl for any of the peaks involved within an elution  defined in Ref[8], but with only one compound as interferent.
region falls below a certain threshold value, the deconvolu- Since the dissimilarity is a sinus, it varies between 0 (com-
tion of this region is considered complex (see Sedfidrfor plete overlap) and 1 (peaks fully resolved). Those peak pairs
the selection of the threshold value). The algorithms detailed belonging to different chromatograms whose dissimilarity
in Section2.2are then selected, according to the complexity falls below a certain threshold are assumed be originated by

of the elution regions. the same compound.

The evaluation of SELis performed before the decon- The threshold value of dissimilarity should be an assess-
volution itself. Therefore, the initial estimates of the peak ment of the confidence of the chromatographer on the reli-
parameters in the deconvolution algorithms (see PH})! ability and difficulty of his/her results: higher values mean
are used to calculate the theoretical peak profiles @fand that peak shapes are not reproducible (two peaks originated
b. Accordingly, a more or less biased value of SElill be by the same compound can be rather dissimilar), whereas

obtained, since not the actual but only an approximation of low values restricts the assessment of the same compound to
the parameters is taken. Therefore, a higher threshold valuehighly similar peaks. A default value of 0.45 is recommended
is recommended to account possible under-estimations of thefor non-problematic chromatograms.

SEL, value due to biased initial parameters. In the next steps of the program, the parameters defining

the peak shape of the same compound will be made equal,
2.4. Identifying compounds from different although the retention times and peak heights can vary from
chromatograms batch to batch. This is due to the assumption that the peak

shape is maintained constant among injections—usually true

In previous work[7,11], the deconvolution errors were in most chromatographic systems—, but the retention times
demonstrated to notably decrease when first-order chro-are not strictly reproducible due to irregularities in the flow-
matograms from different batches are treated altogether,fate or other sources.
which was called multi-batch deconvolution. Peak profiles
of those compounds which are present in more than one in-2.5. Sorting out automatically the deconvolution process
jection are better retrieved, due to a decrease in the ambiguityin multi-batch treatment
of the mathematical solution. This strategy concerns not only
the multi-batch treatment of related samples, but also the in- There are several situations where the multi-batch
clusion of injections of all or some of the standards of the treatment outlined in the previous section can be applied.
target compounds. A straightforward example of this approach corresponds

In this work, this methodology is automated in orderto get to the consideration of standard injections of individual
maximal benefits from multi-batch deconvolution for non- compounds together with the chromatogram of a mixture.
experienced users. The program processes more than ontn this case, the peak shape of each compound is first
chromatogram simultaneously, and the peak detection algo-retrieved by fitting the chromatogram of the standards. This
rithm is applied to all of them to obtain a rough estimation information is then applied to deconvolve the chromatogram
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of the mixture in a second step, forcing each peak shapeing peaks (this means that the minimal polynomial degree

to be equal to the previously found with the standards. will be at least one). A second fitting of the chromatogram

This procedure cannot be classified, however, as a trueis then performed, using now the previously fitted parame-

multi-batch treatment. The reinforcement of information ters as initial estimates, and zero values for ghearame-

can be also achieved even when no standard injection isters for those peaks whose model complexity was increased.

available, but in this case, chromatograms corresponding toOnce got the convergence, the same study on the confidence

related mixtures are required. This second case correspondtervals is performed, decreasing the model complexity for

to a true multi-batch deconvolution, since all chromatograms those compounds for which the higher term in the polynomial

are treated not sequentially but at the same time. Enhancedvas found non-significant, and increasing the polynomial de-

results are obtained with this strategy, since the parametergree for the others. Ifincidentally, the treatment decreases the

defining the peak shape are less ambigya@isl ]. polynomial degree of a given compound, it will be kept and
Strictly speaking, the difference between these two ap- no more analysis of the uncertainty of the parameters referred

proaches relies on the availability or not of chromatograms to this compound will be performed. The process continues

including baseline-resolved peaks to be used as if wereby decreasing or increasing the polynomial degrees until the

standards. If the same compound is baseline-resolved in onedegree of all compounds has been identified.

chromatogram but poorly separated in another, the deconvo-

lution can be performed not simultaneously but sequentially.

This speeds up the computation time without loosing 3. Experimental

precision, since the peak shape can be well established from

the baseline-resolved peak. The multivariate selectivity, = The reagents, apparatus and experimental procedure were

computed as described in Secti2i, was used here as an  described in Part[1].

estimator of the resolution. The same threshold used to select

the type of algorithm was adopted in this case to decide

whether the chromatograms should be deconvolved at atimed. Results and discussion

or on the contrary, if a sequential treatment will report more

benefits. 4.1. Comparison of the different algorithms
2.6. Selection of the polynomial degree in the PEMG In order to testthe performance of the proposed algorithms
model and the adequacy of the multivariate selectivity as an estima-

tor of the problem complexity, synthetic experiments were

The use of Eq(2) as a model to deconvolve chromato- carried out, consisting of several peak arrangements involv-
graphic peaks obliges to an appropriate selection of the poly-ing two peaks at different overlapping degree. The signals
nomial degree (i.e. PEMG1, PEMG2, etc.). This should be were built from two PEMG1 peaks. Parameter values were
addressed with care: whereas a too simple polynomial can(Eq.(4)) ho=1,s0=6 ands; =0.1 for both peaks. The reten-
introduce systematic errors (underfitting), a too complex one tion time of one of them was kept constant@at 40 (arbi-
may lead to overfitting (two replicates with slightly different trary time units), whereas the other was varied from 50 to 70
noise can lead to completely different solutions). In this case, (stepped in 0.5 units from 50 to 60 and in 1 unit from 60 to
the analysis of residuals is not a valid tool to assess the proper70). Blank noise of 0.01 standard deviation units was added
polynomial degree. The reasonisthatthe predicted signal will to each chromatogram. The four algorithms were applied to
fit always better the experimental part when more complex each experiment.
polynomials are selected, and the highest—although notnec-  Usually, the quality of the fitting is established through
essarily correct— polynomial degree will be systematically a straightforward comparison between the predicted and ex-

chosen as the best. perimental composite signals, quantifying the discrepancies
An analysis of the uncertainty of the parameters—the  with a maximum likelihood estimator, such as the sum of
values describing the standard deviation in y—was per- squared residuals (SSR). However, the result of the decon-

formed to establish the proper model complexity. The 95% volution is not the composite signal but the individual ones,
confidence interval of eacf parameter was calculated, ac- so that not necessarily a low error in SSR is indicative of a
cording to Ref[2]. right deconvolution. To overcome this, SSR was calculated

A parameter is considered non-significant when its confi- by comparing not the experimental and predicted composite
dence interval brackets zero. Based on this concept, the corsignals, but each predicted individual profile with the cor-
rect polynomial degree for each peak is selected as follows. Inresponding theoretical one. This value, called S@Ri-
afirst step, a PEMG1 model is fitted to all peaks. At that mo- vidual sum of squared residuals), has been proved to be a
ment, the correct polynomial degree is still unknown. Then, good estimator of the deconvolution erf@®]. The square
the polynomial degree for those compounds whaseonfi- root of this value tends to the standard deviation of the blank
dence interval does not contain the zero value is increased tanoise with complete resolved mixtures, in the absence of lack
PEMG2, whereas the PEMG1 model is kept for the remain- of fit.
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The mean of the two SSRalues (one by compound) was algorithms for problems of resolution higher than 0.98 is a
computed first at each deconvolution experiment. In order to waste of time. Naturally, the computation time is increased
get a more precise result, the process was applied 10-fold inwith the number of compounds and chromatograms.
each situation, using different seeds for noise generation, cal- As expected, the difference in performance for the algo-
culating a mean value for each overlapping case. The squaredithms becomes evident in situations of increased overlap.
root of the sum of these values is depicted vs. the peakBoth errors obtained with MSLS and Powell-1 are higher than
distance inFig. 2a. In this figure, the value of multivariate those given by the complex algorithms. One should note also
selectivity (right axis) is overlaidig. 2b plots the meancom-  that LOGA (Fig. 2 long dashed line) performs the best in
putation time of the 10 experiments as a function of the peak all situations. As commented, its parameters (e.g. population
distance. As can be seen, the four algorithms have the samesize, mutation rate, etc.) are however, difficult to establish
behaviour up to a certain resolution threshold (around 20 peaka priori. In this case, the parameters used in the algorithm
distance units), which corresponds to a value of selectivity of configuration were selected, according to Réf. Although
ca. 0.99. This means that a simple algorithm will get good re- the Powell-2 algorithm performs worse than LOGA, it yields
sults in the resolution of the mixture. It is noteworthy that the clearly better results than MSLS and Powell-1, and can be
two complex algorithms (LOGA and Powell-2) need around considered as a quite robust solution for non-experienced
1 min of computation time with any deconvolution problem, users to resolve highly overlapped situations. Note also that
whereas the two simplest algorithm took significantly less deconvolution errors are inversely correlated to the multivari-
time (10 and 2.5 s for MSLS and Powell-1 in the considered ate selectivity, which justifies the use of this figure of merit
problem, respectively). This means that using the complex as a correct estimator of the complexity of the deconvolution

problem, and, consequently, as a guide to select the proper
algorithm.

_A_ _m_ _m_ _M _M 4.2. Deconvolution of real mixtures of several aromatic

160 7 compounds
120 In order to test the method performance, samples contain-
ing six aromatic compounds (toluene, ethylbenzene, butyl-
benzenegp-terphenyl, amylbenzene and triphenylene) were
chromatographed with aqueous—organic mobile phases con-
taining 70, 75, 80 and 85% (m/m) methanol. Injections of
standards, together with five mixtures containing different
Ml concentration ratios of the test compounds were injected
twice within each experimental condition.
The deconvolution studies were performed using three dif-
L 0.96 ferent methods: (i) processing each sample chromatogram
separately (single-batch deconvolution), (ii) deconvolving
each sample chromatogram together with the standards (se-
quential multi-batch deconvolution), and (iii) deconvolving
simultaneously all sample chromatograms without the stan-
dards (multi-batch deconvolution). In methods (ii) and (iii),
the assignment of the peaks to a given compound among
088 chromatograms was performed using the method described
in Section2.4, with a threshold of 0.45 for dissimilarity. All
the peaks were correctly assessed except the case of mixture
- 0.84 3 at 85% methanol, for which a threshold value of 0.55 was
2 introduced. Only algorithms without random part (Powell-1
(@) Peak distance, AU and Powell-2) were used. The deconvolution program was

) ) ) o ] applied without any user supervision.
Fig. 2. Performance of the different algorithms explained in Seci@n Fig. 3plots the chromatograms obtained with all the mix-
for a two-peak deconvolution problem with different separation degrees. g-sp 9

The mean error (left-axis, part a) in deconvolution (expressed as %&R tures eluted with four different mobile phases (solid lines), to-
Sectiord.1) for a 10-folded experiment is plotted vs. peak distaneexis). gether with the deconvolved profiles with method (i) (dashed
Four algorithms were considered: LOGA (long dash), Powell-2 (solid line), lines)—only one of the duplicated injections is plotted to
Powell-1 (short dash) and MSLS (solid line wit#)]. The multivariate  sjmplify the figure. As can be seen, a virtual baseline separa-
selectivity is also given for one of the two compounds (righaxis, solid 5 \yas obtained at 70% methanol. This allowed eliminating
line with (+)). Computation times for each algorithm are plotted in part b vs. . . . .
peak distance. The top diagram illustrates the chromatographic situations atth€ €rror introduced in the preparation of the mixtures: the

10, 15, 20, 25 and 30 arbitrary units of peak distance. nominal concentration of each compound was corrected con-

80

40

Computation time, s

F0.92

SSR,'2, AU
SELs
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Fig. 3. Experimental chromatograms (solid line) obtained from the injection of five mixtures eluted with: (a) 70, (b) 75, (c) 80 and (d) 85% (m/ro). methan
The deconvolved individual profiles (dashed line) using single-batch deconvolution (method (i)) are overlaid. Compound identities: toluethglbEsiyene
(Eth), butylbenzene (Buty-terphenyl (Tph), amylbenzene (Amy), and triphenylene (Trp).

sidering the deconvolved peak areas obtained from the chro-error (compareTables 1 and R yielding figures similar
matograms with this mobile phase. For a given compound, to those obtained at 75% methanol (around 2%). On the
the ratio between the peak areas of the respective standardontrary, the use of multi-batch treatment without stan-
and the mixture injection was computed at 70% methanol, dards (deconvolving the mixtures altogether: method (iii))
and compared with those obtained for other available mobile does not improve significantly the results when compared
phases. Finally, the relative error in concentration was cal- with the single-batch method at this resolution (compare
culated for each mixture, and the mean over the two valuesTables 1 and 3
obtained with the duplicated injections, computed. Results  The deconvolution of the mixtures eluted at 85% methanol
are presented iflables 1-3Each table corresponds to the constitutes a more difficult problem. In fact, only at this mo-
three different deconvolution methods (i)—(iii). bile phase, the multivariate selectivity fell below the above
As can be seeny1% mean relative error was obtained in mentioned threshold of 0.98 for toluene and ethylbenzene,
the deconvolution of the mixture injected at 75% methanol and consequently, the Powell-2 method (instead of Powell-1,
with the three methodd={g. 3b). This low error is not sur-  which was automatically selected for the other mobile phases)
prising, taking into account the separation achieved with this was applied to deconvolve the mixture. For this mobile phase,
mobile phase. This allowed establishing the threshold error butylbenzene and-terphenyl coeluted too strongly, and the
associated to the deconvolution: the remaining residual meansecond- and third-order derivatives were unable to distinguish
error (due both to lack of fit and peak integration) will be ca. them within the peak cluster (for this reason, no results are
1%. At decreasing resolution (80% methanol), deconvolution presented in the table). Also, no evidence (i.e. a shoulder) can
errors became more important, particularly with the single- be observed in the original chromatogram indicating the pres-
batch treatment—method (iJable 1 With this method, a  ence of two compound§&ig. 3d). With this mobile phase, the
mean error of 3% was obtained. Note that the introduction of use of the multi-batch method was mandatory to decrease the
standards allowed a significant decrease in the deconvolutionerrors from 19-50% with the single-batch treatm@&atfe 1
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Table 3

Relative errors (%) in concentration in the deconvolution of a set of mixtures
injected in different mobile phases, processing those mixtures with the same
mobile phase altogether, and using multi-batch deconvolution without the

Table 1

Relative errors (%) in concentration in the deconvolution of a set
of mixtures injected in different mobile phases using single-batch
deconvolution—method (i)

Mobile  Mixture ~ Compount inclusion of standards—method (iii)
phasé Mobile ~ Mixture =~ Compoun8
Tol Eth But Tph Amy  Trp phasé
75 1 20 18 11 06 01 17 Tol Eth But Tph Amy Trp
2 02 0.0 05 -13 -05 -06 75 1 10 24 10 0.6 14 18
3 04 12 07 -05 -11 0.8 2 -0.8 0.5 01 -25 0.3 0.0
4 -15 -08 -11 -30 -38 -19 3 0.3 10 08 -04 11 13
5 19 21 18 0.6 0.7 23 4 -25 -08 -13 -31 -12 -10
80 1 a9 13 08 10 -22 29 5 13 25 19 0.6 20 23
2 12 -36 -98 166 -32 -19 80 1 80 23 -11 18 01 25
3 18 46 21 12 -08 33 2 66 —-32 47 39 -21 -15
4 66 05 —-42 16 -49 -06 3 92 -04 -06 30 22 34
5 41 17 13 13 01 29 4 54 -03 -42 0.7 -18 01
85 1 488 -119 ° ¢ 76 29 5 87 04 -16 31 12 26
2 372 -263 -© = 51 52 85 1 102 08 - = —265 30
3 —188 609 - - -1.0 22 2 -84 138 =< - -171 18
4 496 -97 £ = —6.4 26 3 —156 487 -© = -201 22
5 307 -—-213 - - —4.3 45 4 88 -14 =< - —237 16
5 -68 122 -°© = —223 20

a Methanol, % (m/m).
b SeeFig. 3for compound identities.
¢ Unresolved.

Mixtures are deconvoluted together in a multi-batch deconvolution without
the inclusion of standards—method (iii).

a Methanol, % (m/m).

b SeeFig. 3for compound identities.

— 0, I 1 _490,
to 0.4-5.2% (inclusion of standardEable 2, or 0.8-49% ¢ Unresolved.

(multi-batch treatment with the chromatograms of all mix-
tures but no standards) for toluene and ethylbenzene. ment of the peaks of butylbenzene anterphenyl as a sin-

The results of the deconvolution for amylbenzene deserve gle peak case. As these peaks are unresolved, a certain lack
a special comment. For this compound, the relative error wasof fit remains always in the peak cluster, which is partially
significantly increased at 85% methanol, even when the reso-compensated biasing the peak shape of amylbenzene. In the
lution was not dramatically lowHig. 3d). This is particularly multi-batch deconvolution (cases ii and iii), the wrongly as-
striking for the multi-batch deconvolution without standards signed as single-peak butylbenzeneterphenyl is forced to
(Table 3. The explanation of this effect is the wrong assign- be constant among injections. This is specially troublesome

since the relative peak heights of both compounds are not

Table 2 constant, so neither the peak shape of the cluster. The effect
Relative errors (%) in concentration in the deconvolution of a set of mixtures IS less important when standards are included, since the peak
injected in different mobile phases using multi-batch deconvolutionwith the  shape of amylbenzene is fixed in a first step by fitting the indi-
inclusion of standards—method (ii) vidual injections of this compound. In case of the single-batch

Mobile ~ Mixture ~ Compoundl treatment, the lack of fit introduced by the wrong assignment
phasé Tol Eth But Tph  Amy Tmp of butylbenzgne and-terphenyl as a s.ingl.e peak is better
75 1 “004 22 10 001 20 21 processed, since the peak shape of this single peak can vary
2 ~12 0.6 05 —31 04 0.2 from batch to batch.
3 01 10 02 -16 28 11
4 -32 -08 -12 -37 -01 -08
5 12 2.7 17 03 40 28 5. Conclusions
80 1 03 44 -07 18 -10 35 . ) " .
2 03 19 -09 -31 -32 00 The polynomial-exponential modified Gaussian model
3 32 56 09 20 18 37 presented in this work is useful to deconvolve chromato-
4 —25 22 -07 -21 15 15 graphic peaks. It constitutes an attractive alternative to solve
5 31 52 08 22 13 35 the problem of baseline raisings present in the original for-
85 1 46 13 £ - —6.9 4.4 mulation of the polynomially modified Gaussian function
2 04 50 -4~ —28 40 (PMG) previously describefd0]. The PEMG model has the
i :g'é _152 o . j% gi same advantages as the PMG, among which its high stability
5 21 34 &  c 31 43 and easy convergence in fittings constitute features of pri-

a Methanol, % (m/m).

b SeeFig. 3for compound identities.

¢ Unresolved.

mordial importance when this model is applied with decon-
volution purposes, in an automatic program (with no user
supervision).
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